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In order to overcome shortcomings of triangulation based meshing tools a new type 
of mesh generation tool has been developed. At first, the significant geometric 
shape of the bathymetry is approximated by free form surfaces using the input 
information from measurements, digital surface models and maps. Different editor 
tools take advantage of the specific structure of sounding data, such as cross 
sections, longitudinal profiles or scattered data. Based on these approximating 
surfaces, which are connected C1 continuously, any mesh with user specified 
criteria can easily be generated. These quadrilateral or triangle meshes may be 
equidistant, regular or unstructured due to different refinement criteria. 
The advantage of this new mesh generation tool is demonstrated within a project to 
simulate and to predict the amount of cohesive sediment movement in the estuary 
of the tidal Weser River. In this realistic example two different criteria for mesh 
refinement are applied: At first, all elements are refined due to the depth of the 
element nodes. In addition, the user specifies refinement areas with special impor-
tance of the numerical results. The effort to generate the mesh, the quality of the 
mesh and the results of the numerical simulation are evaluated. 

 
 

Introduction 
Numerical simulations of hydrodynamic problems require a discrete element mesh of the area 
to be investigated. These meshes and the geometric description of bathymetries are based on 
various measurements, digital surface models and additional information gained by maps. 
Many of the commonly used mesh generators use the depth measurement points directly as 
element nodes. This leads to an uneven and from the physical point of view to an undesirable 
distribution of element nodes. Using data from different field campaigns or gaps and overlaps 
between different measurement regions may cause additional problems. In order to overcome 
these shortcomings a new type of mesh generation tool has been developed, which is based on 
the methods of geometric modelling. 
These methods of geometric modelling are used with success in computer sciences and engi-
neering in order to generate and visualize geometry. In this paper the adaptation of these well-
proved methods to problems dealing with natural systems is presented. For numerical simula-
tions of the hydrodynamic behaviour of rivers, waterways, harbours and coastal lines the 
corresponding bathymetries have to be described with element meshes in a discrete form. In 
order to generate these finite element meshes or finite difference meshes as presented in this 
paper the bathymetries are approximated with spline surfaces. Based on these approximating 
surfaces structured and adaptive element meshes could easily be generated (Berkhahn, Göbel, 
Piasecki  2001). Due to the large number of measurement points describing originally the 
bathymetry, very effective methods to calculate the coordinates of the surface control points 
have been developed.  
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Free Form Geometry 
Free form geometries are widely used in computer aided geometric design and re-engineering 
of surfaces in order to describe the geometric shape of technical products (Hoschek, Lasser, 
1992) (Farin, 1999). Often Bézier curves and surfaces fulfil the requirement of generating 
smooth geometry. In the field of bathymetry approximation based on a large number of scat-
tered data Bézier surfaces show the disadvantageous property of global modelling. Therefore 
the concept of Bézier surfaces is generalized to the concept of segmented surfaces, which 
leads to the surface representation with b-splines (Farin, 2002).  A b-spline surface is defined 
by 
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In equation 1 all expressions in bold face indicate a point in the three dimensional Euclidian 
space . On the left hand side of this equation  denotes a point on the b-spline 
surface in dependence of the two parameters  and . The first expression in the double sum 

 describes a regular grid of  control points in  parameter direction and 
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control points in  parameter direction. These control points b  are called de Boor points. v ij

The shape functions in u  and  parameter directions are called b-spline functions  
and , where the upper indices  and  indicate the degree of the b-spline functions. 
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In order to ensure the property of local modelling possibility the influence of the de Boor 
points with respect to the shape of the surface has to be restricted to a specified parameter 
range. Therefore the b-spline functions of degree  are defined as follows 0
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In equation 2  and u  denote the lower and upper bounds of the iiu i 1+
th parameter interval. All 

bounds of the parameter intervals are gathered in the knot vector  u
 [ ]T0 N K 1u , , u + +=u K   . 3 

In this manner the b-spline functions  in dependence of the parameter  are defined 
with the knot vector  according to equations 2 and 3. The b-spline functions of degree  are 
given with the recursive formula 
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It is evident that the b-spline function  of degree  is based on the b-spline functions 
and  of degree . This ensures the important property of local modelling possibility 
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For the example of an equidistant knot vector the corresponding quadratic b-spline functions 

 are shown in figure 1. 2
iN (u)
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Figure 1 Quadratic b-spline functions  

equidistant knot vector 
[ ]T0,1,2,3,4,5=u  

The equation 1 has to be an affine combination which means that the factors of all de Boor 
points for every parameter combination u  and  have to summarize to 1 . This requirement is 
only fulfilled within the intervals 
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respectively. Therefore the definition 1 is restricted to the parameter intervals [ ]K N 1u u ,u +∈  
and [ ]L M 1v v , v +∈ . An example b-spline surface with K L 3= = , N 5= ,  and equidis-
tant knot vectors  und  is shown in figure 2. The grid of de Boor points is shown in dark 
grey and the corresponding b-spline surface is presented in black. 
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Figure 2 B-spline surface without endpoint interpolation  

As shown in figure 2 the b-spline surface with equidistant knot vectors does not interpolate 
the end control points. End point interpolation is an important property to construct C  con-
tinuous connections between different b-spline surfaces. Therefore -multiple knots in the 
knot vector  or -multiple knots in the knot vector u , respectively, are introduced. For a 
boundary curve in -parameter direction these multiple knots lead to 
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These - and -multiple knots assures a b-spline surface interpolating the end de Boor 
points. The same b-spline surface as shown in figure 2 with 

K L
K L 3= = , ,  but 

with knot vectors u  and  containing multiple end knots is presented in figure 3. 
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Figure 3: B-spline surface with endpoint interpolation  

Approximation of Scattered Data 
At least  measurement points  have to be provided in order to avoid an un-
determined system of equations for the coordinates of the de Boor points. Equidistant knot 
vectors  and  with - and -multiple end knots are chosen. The unknown de Boor points 

 are chosen in a regular and equidistant grid related to local - and -coordinates. Thus 
the -coordinates of the de Boor points are to be calculated. Every measurement point  
can be expressed as a point on the approximating b-spline surface b  
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Equation 8 represent three independent equations for the -, - and z -coordinates. The 
equations for the x - and -coordinates can be used for calculating the unknown parameters 

 and  for every measurement point  on the b-spline surface 
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As the parameters  and  for every measurement point  are  calculated, the only 
unknown values in equation 10 are the z -coordinates of all de Boor points 
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This leads to an over-determined system of equations, which can be solved with a 
decomposition method (Matheja, Stoschek, Berkhahn, 2001). In realistic cases this is a time 
and memory consuming process.  
Therefore a high efficient iteration algorithm is developed: For every de Boor point  the 
corresponding measurement points which are in his sphere of influence are selected. 
Based on these selected measurement points the mean value of their -coordinates is calcu-
lated. This mean value 

ijb

mp
z

z(ij)p  has to be the -coordinate of the b-spline surface at the parame-
ters  and  of the de Boor point b  

z
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At the first iteration step the z -coordinates of all de Boor point zijb  are set to z(ij)p  which 
leads to the deviations zij∆  

 0
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The -coordinates of all de Boor point are improved with the corresponding deviations and 
the iteration process will be continued until the deviations 

z
zij∆  are small enough 
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This iteration algorithm is proved for the calculation of large-scale b-spline surfaces with 
several thousands of de Boor points (Berkhahn 2002).  

Generation of Finite Element Meshes 
Since the approximating b-spline surface is based on a regular de Boor point grid it is very 
easy to generate a regular element mesh. The element nodes n  are generated on the b-spline 
surface with equidistant parameter distances u∆  and v∆  
 ij 0 0(u i u, v j v)= + ∆ + ∆n b   . 14 
Any other criteria based on the geometry of the b-spline surface can be used to generate other 
element pattern. Using a common refinement method, the new nodes are defined by a linear 
interpolation between existing element nodes. Instead of this conventional mesh refinement 
the new nodes are created by a linear interpolation in the -parameter space. Thus the 
refinement nodes are placed on the b-spline surface and describe the bathymetry with 
increased accuracy. 

uv

Example 
As a real world example the estuary of the Weser River in Germany is approximated with b-
spline surfaces and a triangle element mesh is generated. In figure 4 the initial situation with 
measurement points of the estuary is shown (data source: Bundesanstalt für Wasserbau, 
2001). These measurement points contain gaps and overlaps between the areas of 
measurement campaigns. The main river will be approximated with b-spline surfaces. This 
approximation surface is adapted thoroughly to the course of the river. Figure 5 demonstrates 
the 11*180 de Boor point grid defining the b-spline surfaces shown in figure 6. In these 
perspective figures the z-coordinate is scaled by the factor of 30. 
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Figure 4   measurement points of the estuary of the Weser River 

 

 

 
Figure 5   de Boor point grid of the main river 
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Figure 6   b-spline surface of the main river 

Based on these free form surfaces a starting triangle mesh is generated for the main river. The 
elements in the areas besides the main river are generated as a regular adapted triangle mesh. 
This starting mesh is shown in figure 7. 
 

 
Figure 7   b-spline surface based triangle mesh of the main river and regular adapted mesh of the tidal areas 
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In a second step this starting mesh is refined in areas where the z -coordinates of the element 
nodes are greater . This refined mesh is shown in figure 8 and 9. 2,0 m−
 

 
Figure 8  final triangle element mesh (refinement level z 2, 0 m= − ) 

The boundary conditions of this final triangle mesh is post processed within the SMS Surface-
Water Modelling System from Boss International1. 
 

 
Figure 9  final triangle element mesh within the SMS Surface-Water Modelling System  

                                                 
1 www.bossintl.com 
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Results of Numerical Simulations  
The 2D-numerical simulations were carried out with the RMA2 model from the Waterway 
Experiment Station (WES). The northern boundary is defined by a tidal water level boundary. 
The southern boundary is defined by a tidal discharge. Tidal boundary conditions need an 
advanced mesh for stable computations of flow velocities. Even the large wet/dry area needs 
special attention. No wet ponds should be left when reaching ebb. It is difficult for a model to 
integrate ponds back into the calculation after rewetting the area. Figure 10 shows a results of 
the calculation during an ebb period. The velocity vector show the direction, the magnitude is 
given by the shading. Parts of the mesh are already dry (white area). 
 

 
Figure 10  results of a tidal simulation  

sea 

river

 

Conclusion 
The authors succeed in adapting established methods of computer aided geometric design to 
mesh generation problems. The presented tool is designed for the pre-processing of numerical 
simulations in hydrodynamics. This mesh generation tool is specified for user defined mesh 
requirements and in realistic cases it is proved to be high efficient and accurate. The process 
of adapting the meshing tool to user specified requirements will be continued within new 
cooperations with hydrodynamic research groups.  
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