

EXPERIMENTAL RESEARCH AND SYNERGY EFFECTS WITH MATHEMATICAL MODELS Introduction 1. Introduction Wave propagation within coastal zones is strongly influenced by coastal morphology Predominant processes in the coastal zone are: SHOALING BOTTOM FRICTION REFRACTION > SURGING PLUNGING WIND GENERATION

Investigations:

- Measurements of the wave propagation along a foreland with and without a submerged dike (summer dike) in the large wave tank of the FZK
- Numerical simulation of some of the above processes with standard wave models
- Test of the models by comparing the simulation results with the physical model Adjustment of the parameters bottom friction and wave breaking
- Calculation of the transmission coefficients

EXPERIMENTAL RESEARCH AND SYNERGY EFFECTS WITH MATHEMATICAL MODELS

Summer dike in nature and as model

UNIVERSITÄT HANNOVER FRANZIUS-INSTITUT FÜR WASSERBAU UND KÜSTENINGENIEURWESEN Prof. DrIng. C. Zimmermann	DiplPhys. S. Mai <u>DiplIng. N. Ohle</u> DrIng. KF. Daemrich
---	--

EXPERIMENTAL RESEARCH AND SYNERGY EFFECTS WITH MATHEMATICAL MODELS Theoretical Background of the Numerical Programs

3. Numerical Modeling

Standard Wave Models (used):

• HISWA

HIndcast Shallow Water WAves, TU Delft

• SWAN

Simulation WAves Nearshore, TU Delft

• MIKE 21 EMS

Mike 21 Elliptic Mild Slope, Danish Hydraulic Institute

Basic Model Equations:

• HISWA and SWAN

Action Balance Equation

UNIVERSITÄT HANNOVER

Prof. Dr.-Ing. C. Zimmermann

FRANZIUS-INSTITUT

FÜR WASSERBAU UND KÜSTENINGENIEURWESEN

- \Rightarrow Wave Breaking by Battjes and Jansen (1978)
- \Rightarrow Bottom Friction by Collins (1972) and Madsen (1988)

• MIKE 21 EMS

- \Rightarrow Wave Breaking by Battjes and Jansen (1978)
- \Rightarrow Bottom Friction by Dingemans (1983)

Dipl.-Phys. S. Mai <u>Dipl.-Ing. N. Ohle</u> Dr.-Ing. K.-F. Daemrich

EXPERIMENTAL RESEARCH AND SYNERGY EFFECTS WITH MATHEMATICAL MODELS Conclusion and discussion - Calibration parameters

5. Conclusion and Discussion

Adjustment of the parameters bottom friction and wave breaking:

DISSIPATION PROCESS	NUMERICAL MODEL			
	HISWA	SWAN	MIKE 21 EMS	
Wave breaking	$\alpha = 0.95$ $\gamma_1 = 0.85$ $\gamma_2 = 0.95$	α = 1.45 γ = 0.75	$\alpha = 1.0$ (not adjustable) $\gamma_1 = 1.05$ $\gamma_2 = 0.85$	
Bottom friction	C _{fw} = 0.01	K _N =0.02	K _N = 0.03	

Summary:

- All Standard numerical wave models worked well.
- Still it is necessary to calibrate the models.
- This can be done with physical models or field data.
- Advantage of physical models are the well defined boundary conditions.
- Difficulties of field measurements are costs, extreme and unreliable boundary conditions.

UNIVERSITÄT HANNOVER FRANZIUS-INSTITUT FÜR WASSERBAU UND KÜSTENINGENIEURWESEN Prof. Dr.-Ing. C. Zimmermann Dipl.-Phys. S. Mai <u>Dipl.-Ing. N. Ohle</u> Dr.-Ing. K.-F. Daemrich