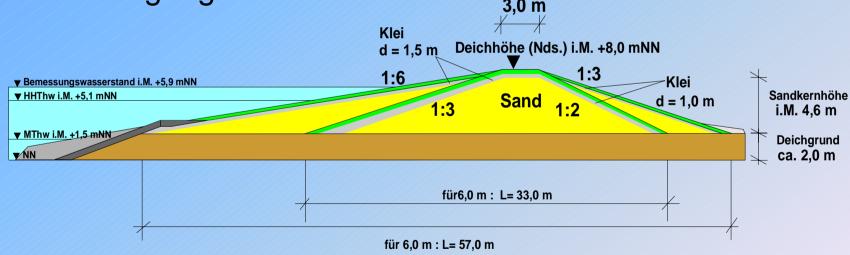
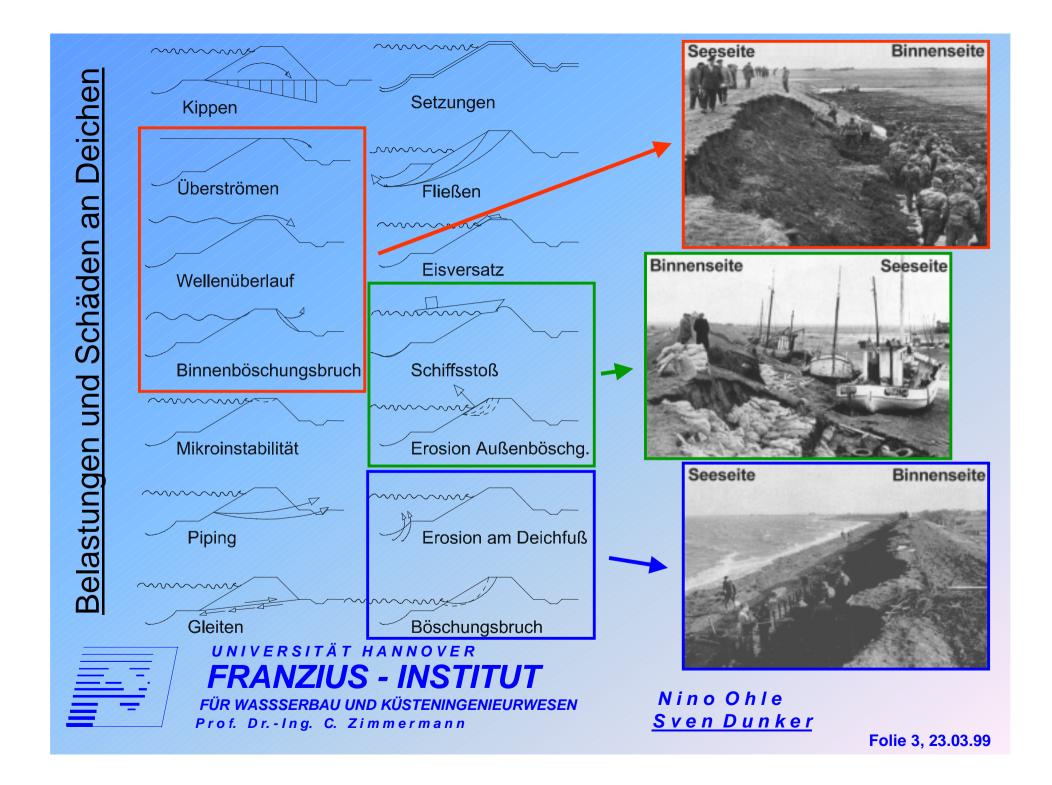
Erhöhung der Widerstandsfähigkeit von Deichbauwerken

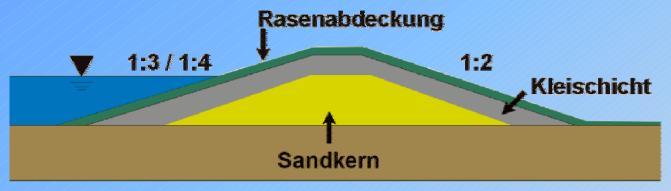
Untersuchungen zur Stabilität bei erhöhten Wasserständen und unter Wellen

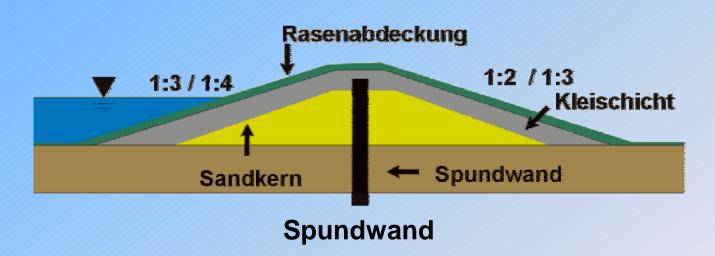

- 1. Ziel
- 2. Möglichkeit der Stabilisierung von Deichen
- 3. Durchführung der Untersuchungen
- 4. Widerstandsfähigkeit gegen Wellen
- 5. Kostenvergleich
- 6. Forschungs- und Entwicklungsbedarf

UNIVERSITÄT HANNOVER
FRANZIUS - INSTITUT
FÜR WASSSERBAU UND KÜSTENINGENIEURWESEN
Prof. Dr.-Ing. C. Zimmermann

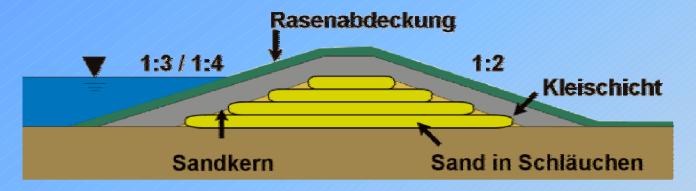

Ziel der Untersuchungen

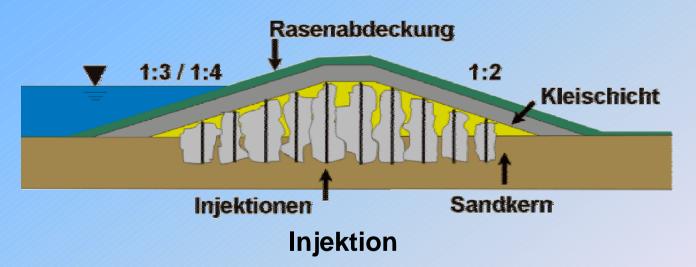
- Verbesserung und Erhöhung der Stabilität eines Deiches mit konstruktiven Mitteln
- bei gleichzeitiger Schonung von Ressourcen (Material, Flächen)
- Verringerung der Kosten durch nachträgliche Ertüchtigungen




UNIVERSITÄT HANNOVER
FRANZIUS - INSTITUT
FÜR WASSSERBAU UND KÜSTENINGENIEURWESEN
Prof. Dr.-Ing. C. Zimmermann

Konstruktive Stabilisierung eines Deichkerns

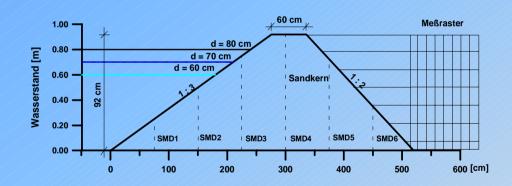

Referenzvariante



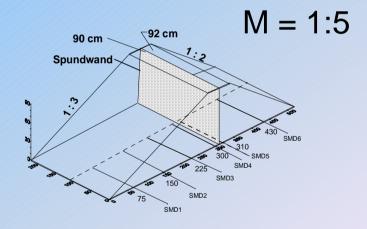
UNIVERSITÄT HANNOVER
FRANZIUS - INSTITUT
FÜR WASSSERBAU UND KÜSTENINGENIEURWESEN
Prof. Dr.-Ing. C. Zimmermann

Konstruktive Stabilisierung eines Deichkerns

Sandgefüllte Schläuche / Geocontainer



UNIVERSITÄT HANNOVER
FRANZIUS - INSTITUT
FÜR WASSSERBAU UND KÜSTENINGENIEURWESEN


Prof. Dr.-Ing. C. Zimmermann

Versuchsaufbau

Eingebauter Deichkern aus Sand mit Lage der Füllstand- und Pegelsonden

Deichkern mit Spundwand und Lage der Füllstand- und Pegelsonden

UNIVERSITÄT HANNOVER
FRANZIUS - INSTITUT

FÜR WASSSERBAU UND KÜSTENINGENIEURWESEN Prof. Dr.-Ing. C. Zimmermann

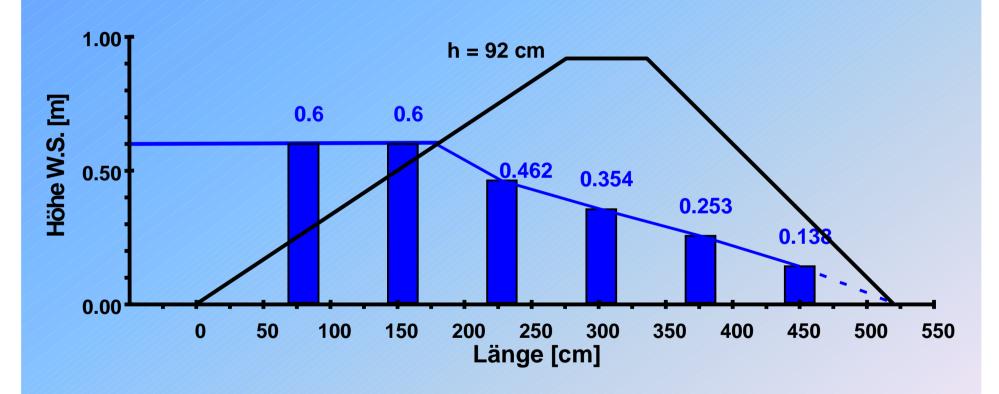
Versuchsdurchführung

Hauptversagensmechanismen bei Extremwasserständen:

- Durchsickerung und Erosion am binnenseitigen Deichfuß
- Wellenerosion an der seeseitigen Böschung
- Überströmung
- Erosion durch Wellenüberlauf an der binnenseitigen Böschung

Annahmen: Deckschicht beschädigt oder erodiert

- Wühltiere / Viehtritt
- Trockenrisse im Klei
- Rutschungen
- Einbauten
- Stabilisierung des Deichkerns / Sandkörpers durch konstruktive Maßnahmen

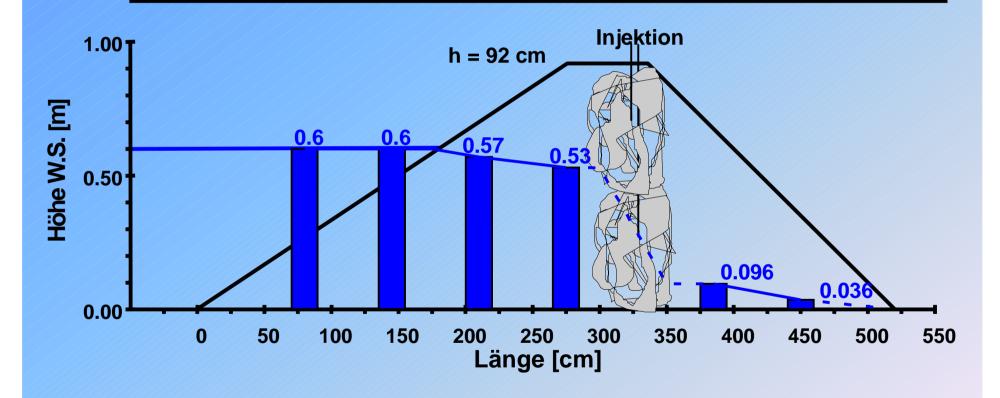


FRANZIUS - INSTITUT

FÜR WASSSERBAU UND KÜSTENINGENIEURWESEN Prof. Dr.-Ing. C. Zimmermann

Sickerlinie

Referenzvariante, Spektrum, d = 60 cm, H = 30 cm

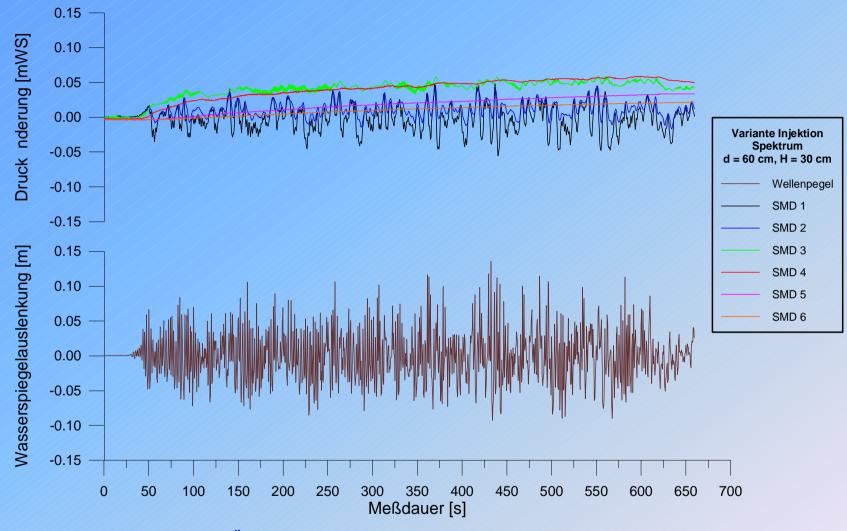


FRANZIUS - INSTITUT

FÜR WASSSERBAU UND KÜSTENINGENIEURWESEN Prof. Dr.-Ing. C. Zimmermann

Sickerlinie

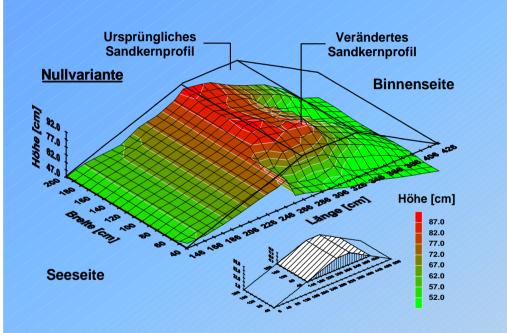
Injektionsvariante, Spektrum, d = 60 cm, H = 30 cm

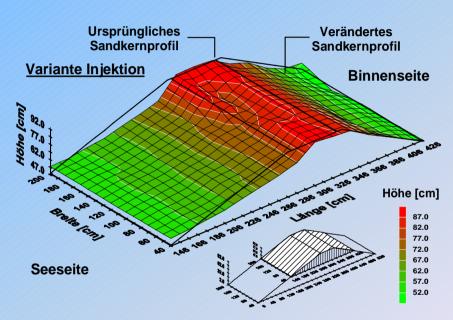


UNIVERSITÄT HANNOVER
FRANZIUS - INSTITUT

FÜR WASSSERBAU UND KÜSTENINGENIEURWESEN Prof. Dr.-Ing. C. Zimmermann

Wellen und welleninduzierter Druckverlauf


FRANZIUS - INSTITUT

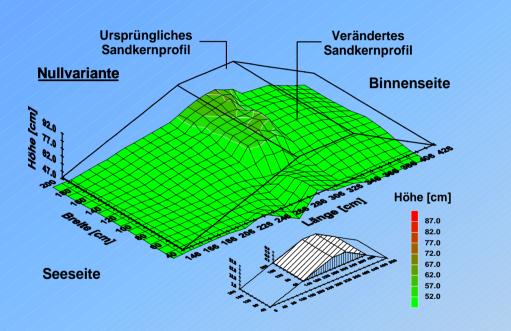

FÜR WASSSERBAU UND KÜSTENINGENIEURWESEN Prof. Dr.-Ing. C. Zimmermann

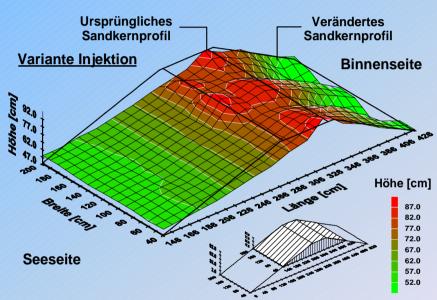
Veränderung des Sandkernprofils von Referenz- und Injektionsvariante

Referenzvariante

Injektionsvariante

Nach 50 Wellen



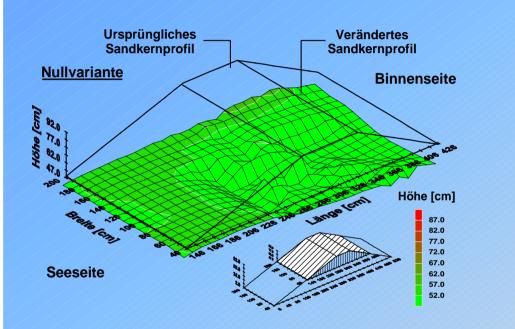

UNIVERSITÄT HANNOVER
FRANZIUS - INSTITUT
FÜR WASSSERBAU UND KÜSTENINGENIEURWESEN
Prof. Dr.-Ing. C. Zimmermann

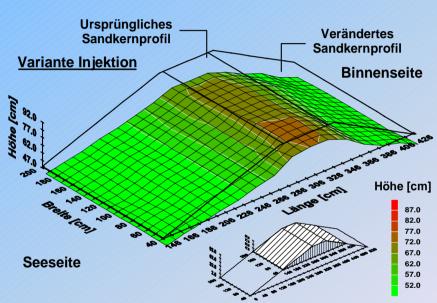
Veränderung des Sandkernprofils von Referenz- und Injektionsvariante

Referenzvariante

Injektionsvariante

Nach 200 Wellen


UNIVERSITÄT HANNOVER
FRANZIUS - INSTITUT
FÜR WASSSERBAU UND KÜSTENINGENIEURWESEN


Prof. Dr.-Ing. C. Zimmermann

Veränderung des Sandkernprofils von Referenz- und Injektionsvariante

Referenzvariante

Injektionsvariante

Versuchsende

UNIVERSITÄT HANNOVER
FRANZIUS - INSTITUT
FÜR WASSSERBAU UND KÜSTENINGENIEURWESEN
Prof. Dr.-Ing. C. Zimmermann

Anzahl der Wellen bis zum Belastungsende

Variante	Anzahl der Wellen bis zum Belastungsende	Modellzeit bis zum Belastungsende	Bemerkungen
	[-]	[min]	
(a) Vergleichsvariante, bzw. konventioneller Sandkern	200	11,9	Totalversagen
(b) Sandkern mit Spundwand	> 3500	> 280,9	Restbauwerk
(c) Sandkern aus sandgefüllten Schläuchen	> 5900	> 295,0	Restbauwerk, kaum Verformung
(d) Sandkern mit Injektion	3330	286,3	Teilversagen

Zum Vergleich

6-stündige Sturmflut:

~ 3000 Wellen

UNIVERSITÄT HANNOVER
FRANZIUS - INSTITUT

FÜR WASSSERBAU UND KÜSTENINGENIEURWESEN Prof. Dr.-Ing. C. Zimmermann

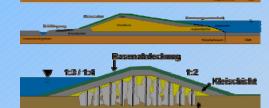
Kostenvergleich

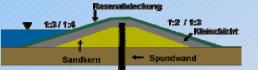
1 Konventioneller Deich

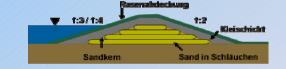
2-1a Neubau: Verstärkung mit Injektionen (heutiger Preisstand)

2-1b Neubau: Verstärkung mit Injektionen (erwarteter Preisstand)

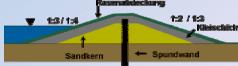
2-2 Neubau: Verstärkung mit Spundwand


2-3 Neubau: Verstärkung mit sandgefüllten Schläuchen


3-1a Ertüchtigung mit Injektionen (heutiger Preisstand)


3-1b Ertüchtigung mit Injektionen (erwarteter Preisstand)

3-2 Ertüchtigung mit Spundwand


6877.35 DM/m 6423.52 DM/m 6.60 Kosten-Ersparnis: 453.83 DM/m 5403.65 DM/m Kosten-Ersparnis: 1473,70 DM/m 6048.61 DM/m 12.05 ° Kosten-Ersparnis: 828,74 DM/m 4908.74 DM/m Kosten-Ersparnis: 1968,61 DM/m 2875.36 DM/m 58,19 % Kosten-Ersparnis: 4001,99 DM/m 1855.49 DM/m 73.02 % Kosten-Ersparnis: 5021,86 DM/m 2500.45 DM/m 63,64 % Kosten-Ersparnis: 4376,90 DM/m 75,0 87,5 50,0 62,5

Stand 1993

Ersparnis in %

Varianten

UNIVERSITÄT HANNOVER
FRANZIUS - INSTITUT

FÜR WASSSERBAU UND KÜSTENINGENIEURWESEN Prof. Dr.-Ing. C. Zimmermann

Forschungs- und Entwicklungsbedarf

- Spundwandlösung
- Einbautechnik in schwierigem Gelände und bei Beschädigung
- Kippsicherheit bei Beschädigung des Sandkerns
- Einrammtiefen, Profilart
- Injektionstechnik
- Optimierung der Injektionen für verschiedene Bodenwerte (Porosität, Körnung, Wassergehalt)
- Verbesserung der Injektionstechnik (Auflasten, Abdichtungen)
- ⇒ Nachteil: Injektionsmaterialien momentan sehr teuer
- Geotextillösung
- Materialien erprobt und bewährt
- Einbautechnik und Einbauform teilweise verbesserungswürdig
- ⇒ Nachteil: Nur bei Deichneubauten einsetzbar

