

Physical Modeling and CFD Simulation of Wave Slamming on Offshore Wind Turbine Structures

Arndt Hildebrandt Franzius-Institute for Hydraulic, Waterways, and Coastal Engineering

Overview:

- **Potential & Problems**
- Test field Alpha ventus RAVE GIGAWIND av
- Laboratory experiments
- Numerical simulation

Summary & Perspectives

Approved projects in the German area of the North Sea

Project	Test fiel	d:		Distance to shore [km]	Water depth [m]
Dollart Emden	6 x Jack	ets		0,01	3
Alpha Ventus (Borkum West I)			/	43	30
Sandbank 24				100	30-40
Bard Offshore 1				87	39-41
Dan Tysk				45	23-31
Borkum Riffgrund West		A		40	30-35
Borkum Riffgrund				34	23-29
Nordsee Ost				30	19-24
Butendiek				35	16-22
Enova Offshore North Sea				40	28-32
Amrumbank West				35	21-25
Nördlicher Grund				86	23-40
Global Tech I				75	39-41
Hochsee Windpark Nordsee				75	39
Gode Wind		11111		45	26-35
Meerwind (Ost und Süd)				53	22-32
Hochsee Windpark, He Dreiht	and the second second			75	39
Borkum West II				45	30
Nordergründe				15	8-15
Bard Offshore Hooksiel		Source: DOTI/	Matthias Ibeler, 2009	0,4	2-8
	Total:	4607			

Research project "GIGAWIND alpha ventus"

- 19 + 32 = 51 acceleration meters
- 67 + 46 = 113 strain gauges

30 water pressure sensors (WPS) => 2 vertical profiles: 6 and 4 WPS => 1 horizontal profile: 22 WPS

Current velocity meter => ADCP + FINO 1

Wave recording => Wave buoy + FINO 1

Video camera => Wave run up

Wind data

- 30 Presssure Sensors (PS) => Vertical profile, 14+4 PS => Horizontal profile with 7 PS => Upper braces with 6 PS
- 2 Acceleration meters (xyz)
- 8 Strain gauges
- Current meters => 2 x 3 NSW probes (xz)
- Water elevation => 24 Wave gauges
- Cameras (front-, back view) => Wave runup, wave geometry

1 Frequency

 $\eta(t) = 0.00029309 \cos(2^* pi^* 0.19531^* t + 2.7833)$ +0.00030647*cos(2*pi*0.21973*t+2.9468) +0.00028045*cos(2*pi*0.24414*t+-3.0928) +0.00042436*cos(2*pi*0.31738*t+-1.1338) +0.00073515*cos(2*pi*0.3418*t+-0.82781) +0.0011736*cos(2*pi*0.36621*t+-0.65619) +0.0018296*cos(2*pi*0.39063*t+-0.54339) +0.0031425*cos(2*pi*0.41504*t+-0.47334) +0.010265*cos(2*pi*0.43945*t+-0.48657) +0.025146*cos(2*pi*0.46387*t+2.0443) +0.020516*cos(2*pi*0.48828*t+-2.1838) $+0.015878*\cos(2*pi*0.5127*t+0.034278)$ +0.01269*cos(2*pi*0.53711*t+2.3999) +0.010957*cos(2*pi*0.56152*t+-1.4619) +0.0087465*cos(2*pi*0.58594*t+1.0126) +0.0072024*cos(2*pi*0.61035*t+-2.5701) +0.0062778*cos(2*pi*0.63477*t+0.14593) +0.0049753*cos(2*pi*0.65918*t+3.026) +0.0044647*cos(2*pi*0.68359*t+-0.20674) +0.003576*cos(2*pi*0.70801*t+2.9292) +0.0032275*cos(2*pi*0.73242*t+-0.0094087) +0.0025998*cos(2*pi*0.75684*t+-2.7959) +0.0024271*cos(2*pi*0.78125*t+0.87949) +0.001837*cos(2*pi*0.80566*t+-1.5816) +0.0019428*cos(2*pi*0.83008*t+2.3668) $+0.0014469*\cos(2*pi*0.85449*t+0.57194)$ +0.0011753*cos(2*pi*0.87891*t+-1.8296) +0.0017064*cos(2*pi*0.90332*t+-3.1108) +0.00064007*cos(2*pi*0.92773*t+2.3292) +0.001356*cos(2*pi*0.95215*t+-0.31436) +0.0017668*cos(2*pi*0.97656*t+-0.19722) +0.00028315*cos(2*pi*1.001*t+1.0076) +0.00093962*cos(2*pi*1.0254*t+-2.285) +0.00029226*cos(2*pi*1.0498*t+0.45282) +0.00094192*cos(2*pi*1.0742*t+2.9127) +0.0008214*cos(2*pi*1.123*t+-2.7973)

Snapshot (5.68 s / 8.00 s), $H_{B, x=105m} = 1.05+0.45 = 1.5 m$

- Small curling factor like deep water breaker
- Pile-up effect
- Water level gradient at pile during impact
- Diffusion in area of coarse mesh

Snapshot (6.68 s / 8.00 s), $H_{B, x=105m} = 1.05+0.45 = 1.5 m$

- Small curling factor like deep water breaker
- Pile-up effect
- Water level gradient at pile during impact
- Diffusion in area of coarse mesh

Snapshot (6.78 s / 8.00 s), $H_{B, x=105m} = 1.05+0.45 = 1.5 m$

- Small curling factor like deep water breaker
- Pile-up effect
- Water level gradient at pile during impact
- Diffusion in area of coarse mesh

Snapshot (6.98 s / 8.00 s), $H_{B, x=105m} = 1.05+0.45 = 1.5 m$

- Small curling factor like deep water breaker
- Pile-up effect
- Water level gradient at pile during impact
- Diffusion in area of coarse mesh

Snapshot of the wave profile during wave impact. Partly vertical water front.

Pressure at various heights

- Symmetric pressure distribution
- \cdot 30% reduced pressure over 7% of H_b in upper zone => curling factor
- \cdot Increasing rise time at lower pressure sensors

- \cdot Symmetric pressure distribution
- Roughly 250 ms pressure "crest"
- · Peak value shows 1 kN/m² difference (wave front, heighest sensor position)

- Pressure peak at cylinder front
- Small area with rapid decrease at the upper limit (small dy)
 Peak characteristic >30° & < 45° for this point of
 - time (dt < 0.01s)

Summary & perspective

GIGAWIND alpha ventus

Wind, shallow waters, renewable Prototype installed Data 2010

Development

Physical and numerical modeling, field data Ongoing tests Large Wave Flume (GWK) tests 2010

Efficient design

Calibration of numerical models for breaking waves Peak pressure distribution, curling factor, rise time

Thank you for your kind attention!

