

Stability of Breakwaters Armored with Heavy Concrete Cubes

Project: Peute Breakwater Phase 1

WOWW2010, Berlin 30.09.2010

Dipl.-Ing. Mayumi Wilms Dipl.-Ing. Nils Goseberg Prof. Dr.-Ing. habil. Torsten Schlurmann

Franzius-Institute for Hydraulic, Waterways and Coastal Engineering Leibniz University, Hannover, Germany www.franzius-institut.de, wilms@fi.uni-hannover.de

Motivation

- Peute Baustoff GmbH produces and distributes iron-silicate products
- High specific density of iron-silicate (bulk density $\rho = 3,7 \text{ t/m}^3$)
 - \rightarrow Reduction of structure dimensions
 - \rightarrow Reduction of overall material usage
- Insufficient insights about the usage of iron-silicate as a concrete aggregate in coastal protection structures
 - → Hydraulic model tests to determine the position stability of an armor layer with iron-silicate as a concrete aggregate
 - \rightarrow Influence of the density of armor stones on the hydraulic stability

Source: Peute

Preliminary Design

- Type of armor stones: cubes
 - Nominal diameter = length of edges = D_n = 5 cm
 - Design by formulae of Hudson (1959) and van der Meer (1993)
- Comparison between breakwaters armored with normal concrete cubes (NC) and with iron-silicate aggregated concrete cubes (heavy concrete, HC)
 - Bulk density HC cube: ρ = 3,2 t/m³
 - Bulk density NC cube: ρ = 2,3 t/m³

Test Setup

Model	Nature
0,24 m	6 m
2,40 s	12 s
0,60 m	15 m
48 min	4 h
	Model 0,24 m 2,40 s 0,60 m 48 min

Scale 1:25 Froude scaling

Random placement of cubes

Test Setup - Wave flume (longitudinal section)

¹ Active Absorption

Test Procedure

Test Procedure

Video

In every test run, three pictures were taken and analyzed.

Two classes were defined for rearranged cubes:

- 1. Cubes moved more than 0,5*D_n ("rocking")
- 2. Cubes moved more than 1^*D_n

Test Results

- Definition of damage (Van der Meer, 1988)
 - Damage number N_{OD}, defined as

$N_{OD} = \frac{\text{number of units displaced out of armor layer}}{\text{width of tested section } / D_n}$

According to van der Meer, an armor layer consisting of cubes finally fails at NoD = 2

Test Results

Damage number N_{OD} against incoming wave height

Results

Impact of the stone density on the position stability of the armourlayer

Damage number N_{OD} against the stability number exemplified for the test with irregular waves

Results – Reduction of the structure geometry

	ρ _{NC} = 2.3 t/m ³	ρ _{HC} = 3.2 t/m ³	Reduction
Edge length D _n	100 %	59 %	41 %
Layer thickness (2 layer)	100 %	59 %	41 %
Volume V	100 %	20 %	80 %
Weight G	100 %	28 %	72 %

Conclusion

- An armor layer with heavy concrete cubes features a clearly higher position stability as one constructed with normal concrete cubes
- For the armor layer contructed with heavy concrete cubes a 40% larger destroying wave height is required than for an armor layer contructed with normal concrete cubes
- The density of stones features a nearly linear influence on the position stability for cubes

Outlook

Phase 2: Analysis of a breakwater head with a sloping wave run-up

Thank you

